Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

نویسندگان

  • Bingmei M. Fu
  • Jinlin Yang
  • Bin Cai
  • Jie Fan
  • Lin Zhang
  • Min Zeng
چکیده

Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor necrosis factor- -induced leukocyte adhesion and microvessel permeability

Zeng, Min, Hong Zhang, Clifford Lowell, and Pingnian He. Tumor necrosis factor-induced leukocyte adhesion and microvessel permeability. Am J Physiol Heart Circ Physiol 283: H2420–H2430, 2002. First published August 8, 2002; 10.1152/ajpheart.00787.2001.—The objective of this study was to investigate whether leukocyte adhesion and/or emigration are critical steps in increased microvessel permeabi...

متن کامل

Leukocyte adhesion and microvessel permeability.

To investigate the direct effect of leukocyte adherence to microvessel walls on microvessel permeability, we developed a method to measure changes in hydraulic conductivity (L(p)) before and after leukocyte adhesion in individually perfused venular microvessels in frog mesentery. In 19 microvessels that were initially free of leukocyte sticking or rolling along the vessel wall, control L(p) was...

متن کامل

Leukocyte-platelet aggregate adhesion and vascular permeability in intact microvessels: role of activated endothelial cells.

Leukocyte-platelet aggregation and aggregate adhesion have been indicated as biomarkers of the severity of tissue injury during inflammation or ischemic reperfusion. The objective of this study is to investigate the mechanisms of the aggregate adhesion and quantitatively evaluate its relationship with microvessel permeability. A combined autologous blood perfusion with single microvessel perfus...

متن کامل

Spent Culture Medium from Virulent Borrelia burgdorferi Increases Permeability of Individually Perfused Microvessels of Rat Mesentery

BACKGROUND Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can dire...

متن کامل

fMLP-stimulated neutrophils increase endothelial [Ca ]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species

Zhu, Longkun, Vince Castranova, and Pingnian He. fMLPstimulated neutrophils increase endothelial [Ca ]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species. Am J Physiol Heart Circ Physiol 288: H1331–H1338, 2005. First published October 21, 2004; doi:10.1152/ajpheart.00802.2004.— Our previous study demonstrated that firm attachment of leukocytes to microvess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015